Showing posts with label guidelines. Show all posts
Showing posts with label guidelines. Show all posts

Friday, October 12, 2018

ASTRO, ASCO, & AUA strongly endorse a shortened course of IMRT for primary therapy

It will come as no surprise to my readers that moderately hypofractionated IMRT (first-line radiation delivered in 20-26 treatments or fractions instead of the conventional 40-44 fractions) received strong endorsement from all of the major US organizations of physicians who treat prostate cancer. The American Society for Radiation Oncology (ASTRO), in collaboration with the American Society of Clinical Oncology (ASCO) and the American Urological Association (AUA) issued the new guidelines, which are also supported by the Society of Urologic Oncology (SUO), European Society for Radiotherapy & Oncology (ESTRO), and Royal Australian and New Zealand College of Radiologists.

A hypofractionation task force issued the new evidence-based guidelines. They divided their guidelines into two parts: (1) moderately hypofractionated IMRT (20-26 fractions); (2) ultrahypofractionated IMRT (4-5 fractions), usually called SBRT, SABR, SHARP, or CyberKnife (I will refer to it as SBRT). They strongly support moderate hypofractionation. They conditionally support SBRT, because of the moderate degree of evidence published by their cut-off date of March 31, 2017. They may revisit those guidelines after further review.

The following guidelines were strongly endorsed based on high quality evidence with strong consensus:

1A: Low risk men who refuse active surveillance should be offered moderately hypofractionated IMRT.

1B: Intermediate risk men should be offered moderately hypofractionated IMRT.

1C: High risk men should be offered moderately hypofractionated IMRT.

1D: Moderate hypofractionation should be offered regardless of patient age, comorbidity, anatomy, or urinary function. However, physicians should discuss the limited follow-up beyond five years for most existing RCTs evaluating moderate hypofractionation. *

1E: Men should be counseled about the small increased risk of acute gastrointestinal (GI) toxicity with moderate hypofractionation. Moderately hypofractionated EBRT has a similar risk of acute and late genitourinary (GU) and late GI toxicity compared to conventionally fractionated EBRT. However, physicians should discuss the limited follow-up beyond five years for most existing RCTs evaluating moderate hypofractionation.*

The following guidelines were strongly endorsed based on moderate quality evidence with strong consensus:

7A: Image guidance (e.g., fiducials, transponders, cone beam CT, etc.) should be used for both moderate hypofractionation and SBRT.†

8A: 3D-CRT should not be used with hypofractionation.§

The following guidelines were conditionally endorsed based on moderate quality evidence with strong consensus:

2A: 60 Gy in 20 fractions or 70 Gy in 28 fractions are suggested for moderate hypofractionation.

2B: No variation in treatment regimen by patient age, comorbidity, anatomy, or urinary function.

3A: Low risk men who refuse active surveillance should be offered SBRT

4A: The SBRT dose for low and intermediate risk men should be 35 Gy - 36.25 Gy in 5 fractions.**

4B: SBRT doses of 36.25 Gy in 5 fractions should not be exceeded outside of a clinical trial or registry.**

5A: At least two dose-volume constraint points for rectum and bladder should be used for moderate hypofractionation or SBRT: one at the high-dose end (near the total dose prescribed) and one in the mid-dose range (near the midpoint of the total dose).


The following guidelines were conditionally endorsed based on low quality evidence with strong consensus:

3B: Intermediate risk men should be offered SBRT, but should be encouraged to do so in a clinical trial or registry.**

3C: High risk men should be not be offered SBRT outside of a clinical trial or registry.

4C: Daily SBRT treatment is not recommended due to increased risk of toxicity.

5B: Normal dose/volume constraints used in the reference study should be adhered to for both moderate hypofractionation and SBRT


The following guideline was strongly endorsed based on low quality evidence with strong consensus:

6A: Planned target volume definition of the reference study should be adhered to for both moderately hypofractionated IMRT and SBRT.††


* While most of the hypofractionation trials did not report beyond 5 years of follow-up (see Table at this link), some did. The Archangeli et al. trial reported survival outcomes out to ten years. (I believe the guideline authors erred about this.) M.D. Anderson published an eight-year update after the close of the task force review. As we saw in our review of RTOG 0126, survival does not become a useful endpoint for perhaps 15-20 years for men with localized prostate cancer, and surrogate endpoints, such as 5-year recurrence-free survival or metastasis-free survival must be used instead. Kishan et al. proposed that for ultrahypofractionated regimens, 3-year PSA may be an excellent surrogate endpoint. The ProtecT clinical trial showed that adverse effects of radiation almost always show up in the first two years.

† For the disaster that can ensue when fiducials are not used with SBRT, see this link. The guidelines should state that intra-fractional motion tracking should be used with SBRT.

§ In the recently presented (not published in time for these guidelines) randomized clinical trial of ulrahypofractionated RT vs conventionally fractionated RT, they did use 3D-CRT in both arms. There was no difference in 5-year biochemical recurrence-free survival or 6-year toxicity.

** In a large, multi-institutional clinical trial (too late to make it into these guidelines), Meier et al. reported excellent 5-year oncological and toxicity outcomes using 40 Gy in 5 fractions. In SBRT dose escalation trials, both Zimmerman at UT Southwestern (reported here) and Zelefsky at MSKCC (I've heard from his patients) found that 45 Gy in 5 fractions gave excellent oncological and toxicity outcomes. The task force neglected the fact that prescribed doses are reported differently by different ROs. Alan Katz, for example, reports a prescribed dose of 35 Gy to the planned target volume (the prostate plus the margin around it), but the clinical target volume (the prostate itself) gets about 38 Gy, while the margin gets considerably less.

†† Smaller margins are possible when fiducials are used for intra-fractional tracking. Tighter margins cause less toxicity to organs at risk.

Sadly, the effect of hypofractionation on erectile function was seldom reported and was not part of the task force's analysis.

It is worth noting that conventionally fractionated IMRT became the standard of care without any comparative clinical trials. The longest running single institution dose-escalated IMRT trial (at MSKCC) had 10 years of follow-up on a small sample size (n=170). By contrast, Alan Katz is expected to report 10-year SBRT outcomes this year on 515 patients. The task force is holding SBRT to a higher standard that by this time next year, it should have the published results to meet.

While the task force endorsed moderate hypofractionation, we will have to see whether radiation oncologists (ROs) follow their guidelines. Because ROs are reimbursed by the number of fractions they give, they will be understandably reluctant to reduce the number of fractions. It remains to be seen whether insurance companies will enforce a limit. It is a clear benefit to the patient in terms of convenience and cost.

Thursday, March 30, 2017

Revised ASCO/CCO brachytherapy guidelines

The publication of the ASCENDE-RT clinical trial (discussed here) has led to a revision in the brachytherapy guidelines (available here) issued by the American Society of Clinical Oncology (ASCO) and Cancer Care Ontario (CCO). The guidelines are for patients who choose radical therapy rather than active surveillance. They based their guidelines only on randomized clinical trials that included brachytherapy as an option.  They exclude high dose rate brachytherapy (HDR-BT) as a monotherapy because it has not been proven in a randomized clinical trial.

Their guidelines suggesting which therapies are suitable are stratified by patient risk level:

Low Risk
  • Low dose rate brachytherapy (LDR-BT) alone
  • External Beam Radiation Therapy (EBRT) alone, or
  • Radical prostatectomy (RP)

Intermediate Risk

For favorable intermediate risk patients (no Gleason score> 3+4, no more than half the cores positive, PSA<10, and stage<T2b):
  • LDR-BT alone
For other intermediate risk patients:
  • EBRT with or without androgen deprivation therapy (ADT) and a brachy boost (LDR-BT or HDR-BT) to the prostate.

High Risk:
  • EBRT and ADT and a brachy boost (LDR-BT or HDR-BT)

They make the following qualifying statements:
  • Patients should be counseled about all their management options (surgery, EBRT, active surveillance, as applicable) in a balanced, objective manner, preferably from multiple disciplines.
  • Recommendation for low-risk patients is unchanged from initial guideline, because no new randomized data informing this question have been presented or published since.
  • Patients ineligible for brachytherapy may include: moderate to severe baseline urinary symptoms, large prostate volume, medically unfit, prior transurethral resection of the prostate, and contraindications to radiation treatment.
  • ADT may be given in neoadjuvant, concurrent, and/or adjuvant settings at physician discretion. It is noted that neoadjuvant ADT may cytoreduce the prostate volume sufficiently to allow brachytherapy
  • There may be increased genitourinary toxicity compared with EBRT alone.
  • Brachytherapy should be performed at a center following strict quality-assurance standards.
  • It cannot be determined whether there is an overall or cause-specific survival advantage for brachytherapy compared with EBRT alone, because none of the trials were designed or powered to detect a meaningful difference in survival outcomes.
Neither the patient nor the doctor should take these to be their only options. ASCO/CCO only included options for which there is Level 1 evidence; that is, evidence from  randomized comparative clinical trials. Patients, doctors and insurance providers should make treatment decisions based on the full array of available clinical data, understanding that higher level evidence carries more weight.