Wednesday, June 21, 2017

Eighth randomized clinical trial of hypofractionated radiation therapy

We now have an eighth randomized clinical trial of hypofractionated radiation therapy. There are no surprises: it showed that oncological and toxicity outcomes were not significantly different between the two regimens. We last looked at it here. This trial is unusual because of the length of follow-up.

Arcangeli et al. report the 10-year outcomes of their study covering 168 high risk patients treated using 3D-CRT (not IMRT) at the Regina Elena Cancer Institute in Rome between 2003 and 2007. The details of the treatments were as follows:
  • Half (85 patients) received conventionally fractionated (Conv)  80 Gy in 40 fractions
  • Half (83 patients) received hypofractionated (Hypo) 62 Gy in 20 fractions
After a median of 9 years of follow-up:
  • 10-year freedom from biochemical failure was 72% for the Hypo group vs. 65% for the Conv group.(no statistically significant difference)
  • 10-year prostate cancer -specific survival was 95% for the Hypo group vs. 88% for the Conv group (no statistically significant difference)
  • 10-year overall survival was 75% for the Hypo group vs. 64% for the Conv group (no statistically significant difference)
  • Hypofractionation was a significant variable in determining prostate cancer-specific survival in multivariate analysis
  • There were no differences in late-term grade 2 or higher urinary or rectal toxicity between the 2 groups.

There are a couple of caveats. For those who insist on rigorous analysis, the Hypo group had worse oncological and toxicity outcomes on an intention-to-treat basis. It was only after the patients were analyzed according to the treatment they actually received that the lack of statistically significant difference became apparent. James Yu, in an accompanying editorial, points out that blood in urine was 16.5% for the Hypo group vs. 3.6% for the Conv group. This may be a caution that hypofractionation should not be attempted using 3D-CRT. In the US, where IMRT is widely available, this should not be an issue.

Here's the table summarizing all 8 randomized clinical trials:


Randomized Clinical Trial
Risk Groups
Fractionation
5-yr bPFS
Urinary toxicity
Grade 2+
Rectal toxicity
Grade 2+
Ref.
PROFIT
100% intermediate
60 Gy/20fx
78 Gy/39fx
85%
85%
22%
21%
8%
14%
1
Fox Chase
67% Intermediate, 33% high
70.2 Gy/26fx
76 Gy/38fx
77%
79%
22%
13%
18%
23%
2
CHHiP
73% intermediate, 15% low, 12% high
60 Gy/20fx
74 Gy/37fx
91%
88%
12%
9%
12%
14%
3
MD Anderson
71% intermediate, 28% low, 1% high
72 Gy/30fx
75.6 Gy/42fx
89%†
85%†
16%
17%
10%
5%
4
RTOG 0415
100% low risk
70 Gy/28fx
73.8 Gy/41fx
94%
92%
30%
23%
22%
14%
5
HYPRO
>70% high, <30% intermediate
64.6 Gy/19fx
78 Gy/39fx
81%
77%
41%
39%
22%
18%
6, 7
Cleveland Clinic
49% low, 51% intermediate
70 Gy/28fx
78 Gy/39fx
94%
88%
1%
2%
5%
12%
8
Regina Elena
100% high risk
62 Gy/20 fx
80 Gy/40 fx
72%*
65%*
21%
14%
NA
NA
9
*10-year figures for the Regina Elena trial
† 8-yr failure-free survival update for MD Anderson

Tuesday, June 6, 2017

Newly diagnosed, metastatic (M1), but still hormone sensitive - best options

(Frequently Updated)

In the US, only 3% of new patients are newly diagnosed with metastatic, hormone-sensitive prostate cancer (mHSPC). "Metastatic," for the purposes of this analysis only includes distant metastases (Stage M1), but not pelvic lymph node metastases (Stage N1). This group has been the subject of many major randomized clinical trials over the last few years. CHAARTED, in the US, randomized to early docetaxel + androgen deprivation therapy (ADT) compared to ADT alone. STAMPEDE, in the UK and Switzerland,  has published several studies: one on the use of Zometa and Celebrex, one on docetaxel,  one on abiraterone+prednisolone  (updated here) (I'll refer to this combination as Zytiga), and two on debulking the prostate with radiation (one from STAMPEDE and one from HORRAD). They also included men with locally advanced and recurrent prostate cancer, which we will address at another time (see this link). 

LATITUDE was a multinational clinical trial comparing Zytiga+ADT to ADT alone. TITAN was a multinational trial comparing apalutamide (Erleada) +ADT to ADT alone. ENZAMET was a multinational trial comparing enzalutamide (Xtandi) + ADT to early antiandrogens +ADT. ARCHES assessed the effect of enzalutamide on radiographic progression-free survival. TITAN and ENZAMET are discussed in more detail here.

We can look at hazard ratios for overall survival. A hazard ratio (HR) of, say, 0.60 means that the treatment reduced the number of deaths by 40% compared to the standard treatment. Unless it is otherwise noted, the HRs we talk about are all statistically significant with 95% confidence.

Early use of docetaxel

The hazard ratios found for all metastatic men were as follows:
CHAARTED: 0.61
STAMPEDE: 0.81
GETUG-15: 0.90 (not statistically significant)

The hazard ratios for men with high volume mets only were:
CHAARTED: 0.60
GETUG-15: 0.8 (not statistically significant)
STAMPEDE: 0.81 (not statistically significant)

The hazard ratio for men with low volume mets only were:
CHAARTED: 1.03 (not statistically significant)
STAMPEDE: 0.76 (not statistically significant)

GETUG-15 was a French randomized clinical trial. It has been criticized for including men with more advanced disease than CHAARTED. When STAMPEDE showed similar results to CHAARTED, GETUG-15 was largely ignored, and early use of docetaxel became the new standard of care. Some argued that the  results of STAMPEDE and CHAARTED suggest that docetaxel should be considered for among all metastatic men, but a CHAARTED update suggests a benefit only among those with high volume of metastases. However, a STAMPEDE update showed no difference in overall survival or failure-free survival between the two subgroups. The STAMPEDE authors point to their larger trial and that their analysis applies more to newly diagnosed men, whereas the CHAARTED groups had more previously treated men. They advocate early use of docetaxel regardless of metastatic burden. (High volume was defined as visceral metastases or 4 or more bone mets with at least one beyond the pelvis or vertebrae.)

One should resist the temptation to compare HRs across studies. Each study had different patient characteristics, and PSA screening policies differ markedly in those countries. In fact, a recent analysis of the STAMPEDE outcomes of men who were randomly assigned to either Zytiga or docetaxel found that there was no difference in survival between the two treatments (see this link).

Early use of Zytiga

The hazard ratios found for all metastatic men were as follows:
LATITUDE: 0.66
STAMPEDE: 0.62

An unplanned secondary analysis presented at ESMO 2018 and published in European Urology looked at high volume vs low volume, and found it worked equally well in both situations:

The hazard ratios for men with high volume mets only were:
STAMPEDE: 0.60

The hazard ratio for men with low volume mets only were:
STAMPEDE: 0.64

In an 5-year update, there was no difference in mortality depending on whether the patient had many or few metastases:

The hazard ratios for men with high burden patients only were:
STAMPEDE: 0.54

The hazard ratios for men with low burden patients only were:
STAMPEDE: 0.55

Early use of Zytiga+Docetaxel

Overall survival is only available for men with high volume of metastases, but radiographic progression-free survival increased by 2.5 years (from 2.0 to 4.5 yrs) with the addition of abiraterone to docetaxel. Time to castration resistance increased by 1.7 yrs (from 1.5 to 3.2 yrs). 

For men with high volume of metastases, median overall survival increased from 42 months with docetaxel only to 61 months with docetaxel+Zytiga.



Early use of darolutamide (Nubeqa) + Docetaxel

In the ARASENS trial, the "triplet" of ADT+ docetaxel + darolutamide reduced mortality by 32% over ADT+docetaxel (HR= 0.68).



Early use of Erleada

The hazard ratio for metastatic men was 0.67

Early use of Xtandi

The  hazard ratio for all metastatic men was 0.66

The hazard ratio for men with high volume mets only was 0.74 - not statistically significant

The hazard ratio for men with low volume mets only was 0.48 - statistically significant


Early use of Debulking

The hazard ratios found for all metastatic men were as follows:
STAMPEDE: 0.92  (not statistically significant)
HORRAD:  0.90 (not statistically significant)

The hazard ratios for men with high volume mets only were:
STAMPEDE: 1.07 (not statistically significant)

The hazard ratio for men with low volume mets only were:
STAMPEDE: 0.68 (statistically significant)

Early use of Zometa+Celebrex

The hazard ratios found for all metastatic men were as follows:
STAMPEDE: 0.78 (see this link)

Which is best? 

The early use of Zometa is frowned upon because side effects increase over time. However, if an older man already has osteoporosis, Zometa+Celebrex is a good combination. As long as the patient doesn't have contraindications like heart disease or bad teeth, it is cheap, non-toxic, and reduced risk of death by 22% at the 43-month follow-up. Zometa is usually given along with ADT anyway, so it is hard to argue against including this combination along with Zytiga, Erleada or docetaxel. However, the use of Zometa when one is still hormone-sensitive is controversial. An argument can be made for putting it off until there is evidence of osteoporosis on a DEXA scan - the risk of the worst side effect- osteonecrosis of the jaw - increases with the amount of time taking it.

The hormonal therapies have different modes of action, but without a randomized clinical trial, it's impossible to say that one extends life more than the others. Xtandi and Zytiga are being compared in an ongoing arm of STAMPEDE. (Zytiga prevents the formation of androgens by the adrenal glands and via intra-tumoral synthesis. A recent study suggests that it stops formation of testosterone by the testicles as well. Xtandi and Erleada block the androgen receptor and prevents its translocation into the nucleus, where it can invigorate the cancer even without outside androgens. Erleada also prevents "upgrading" of the androgen receptor - a mode of castration resistance where multiple copies of the androgen receptor appear on the cancer cell, so it can be activated by even the slightest amount of androgen. However, it is unknown whether it slows down castration resistance in clinical practice - the cancer cell evolves many workarounds. A small trial and STAMPEDE found that combining Zytiga and Xtandi did not improve survival in the castration-resistant setting, but side effects were worse. 

Because neither docetaxel nor Zytiga showed a clear survival advantage when men were randomized to one or the other (Sydes et al.), the decision must be made based on other factors.

Both docetaxel and Zytiga increase toxicity over ADT alone. In the LATITUDE trial, physicians reported grade 3-5 (serious to death) events among 68% taking Zytiga vs 52% on ADT only. Higher rates of grade 3 hypertension and hyperkalemia were observed. In the STAMPEDE trial, physicians reported grade 3-5 events among 47% of those taking Zytiga vs. 33% of those taking ADT only. Higher rates of hypertension and liver enzyme elevation were observed. In the TITAN trial (Erleada), where almost two-thirds had high-volume metastases, Grade 3 (serious) and Grade 4 (life-threatening) toxicities were similar (41-42%) for those who got apalutamide or placebo. In the ENZAMET trial, serious side effects were experienced by 42% of those taking Xtandi vs 34% of those taking an early antiandrogen. The rate of serious side effects is remarkably similar.

In the docetaxel trials, STAMPEDE reported grade 3-5 events among 52% taking docetaxel vs 32% taking ADT only. Neutropenia, lethargy and GI disorders were especially elevated. CHAARTED reported grade 3-5 events among 30% taking docetaxel. Neutropenia, fatigue, gastrointestinal and allergic reactions were elevated.

Based on patient-rated global quality of life after 2 years (see this link), docetaxel and abiraterone were not meaningfully different in patients randomized to one or the other. Abiraterone was better than docetaxel at 12 weeks and 24 weeks. One might expect that the increase in toxic events would have been worse with docetaxel, but while they were different in kind, the incidence of all events requiring medical attention was similar for both treatments. All medicines seem to have lower incidence of side effects when they are used earlier, while patients are healthier.

High volume/low volume of metastases

Planned subgroup analyses of both CHAARTED and STAMPEDE showed that certain different therapies may improve survival depending on the number of distant metastases found using a bone scan/CT. Remember that high volume was arbitrarily defined as visceral metastases or 4 or more bone mets with at least one beyond the pelvis or vertebrae; low volume is anything less than that (often referred to as oligometastatic).

For men who are diagnosed with a low volume of metastases (oligometastatic), debulking can add to survival. STAMPEDE recruited participants before the benefit of early Zytiga was known, so it is unknown how the two therapies might interact. It is reasonable to speculate that early Zytiga may be used to radio-sensitize the cancer to debulking with radiation. The role of metastasis-directed SBRT has yet to be proven, but may be considered when safe to do so.

In a post-hoc analysis of LATITUDE data, men with high volume disease benefited from early use of Zytiga, but men with low volume disease did not. In STAMPEDE, there was no difference - Zytiga was equally effective in both groups. Erleada also seems to be equally effective in both groups. However, LATITUDE had mostly high-volume disease men in its sample. For men with a high volume of metastases, docetaxel or Zytiga (but not debulking) may confer a survival benefit). Xtandi seems to benefit most those with low volume of metastases.


Can they be combined or sequenced?

The PEACE-1 trial showed that the combination of docetaxel and Zytiga improved outcomes significantly.

A major clinical trial, ACIS, found that the combination of Erleada and Zytiga increased radiographic progression-free survival in men who were already castration-resistant. That combination improved results (in the AASUR trial) when given as an adjuvant therapy along with prostate radiation to men with very high-risk localized prostate cancer, and will be testedamong high-risk patients with high Decipher scores in the PREDICT-RT trial. The combination is being tried along with salvage radiation in men who have failed prostatectomy in the INNOVATE trial. An ongoing clinical trial is investigating whether Erleada combined with Zytiga extends survival in the relapsed hormone-sensitive setting.

There is a hint that docetaxel may have some efficacy in keeping Zytiga working longer. The androgen receptor always eventually becomes resistant to the effect of Zytiga. Sometimes resistance is attributable to a change in the androgen receptor called "the AR-V7 splice variant." There was a very small (n=14) trial at JH where they were looking at the role of the AR-V7 splice variant in resistance to second-line hormonals (Zytiga or Xtandi). In a few guys (6 out of 14) who were AR-V7 positive after that hormone therapy, they became AR-V7 negative after docetaxel treatment. This is also an effect that they were hoping that supraphysiological doses of testosterone might sometimes create (see this link).

This may work both ways. Hormonal agents may even re-sensitize the cancer to docetaxel after it has become docetaxel-resistant (see this link). It may turn out that alternating the use of chemo and advanced hormonals (and testosterone!) is a good strategy.

For logistical reasons, it may be useful to start with six cycles of docetaxel, which would take 15 weeks. In this way, Zytiga, Erleada or Xtandi can begin 15 weeks later. If one starts with Zytiga, it may take three or more years before it stops working and docetaxel can be tried (Among metastatic men, failure-free survival was about 4 years in STAMPEDE, radiographic progression-free survival was 33 months in LATITUDE). It seems that one can receive more therapies in less time if a patient begins with docetaxel.

It is possible that concomitant early use of Zytiga and docetaxel may have a synergistic effect on the cancer, and in preventing the onset of Zytiga resistance. This is pure conjecture and would have to be proved in a clinical trial. The downside is the cumulative side effects.

The other possibility is starting with docetaxel only and following up with the combination of Zytiga +ADT. By holding off on ADT use, it might delay some of the selective evolutionary pressure that leads to early Zytiga resistance. It is unknown whether early docetaxel without ADT has similar efficacy to the combination. Again, this is a good hypothesis to be tested in a clinical trial.


Will Provenge, Xofigo and Jevtana also be more beneficial if used earlier?

Isn't earlier always better? Not necessarily (see this link). Cancer is a moving target, continually altering its genetic make-up. What works when cancer is in one state may not necessarily work when cancer is in another state. There can be unpredictable interactions. Early and prolonged use of bicalutamide, for example, may actually eventually increase the cancer growth rate; yet, with cancers that have become castration-resistant, adding bicalutamide may sometimes slow it down.

Although Provenge is more effective when the patient's disease is less progressed (see this link), it was not any more effective when used for mHSPC (see this link). Xofigo is in a clinical trial for mHSPC, and Jevtana is in trials for use before docetaxel.

What about nuclear medicines?

An exciting new field is the use of nuclear medicines (alpha-emitters like Xofigo, and beta-emitters like Lu-177-PSMA). Their use has historically been restricted to men with mCRPC. There is a clinical trial of Lu-177-PSMA for men who are castration-resistant but are not yet detectably metastatic (see this link). The PSMAddition trial is for men who are newly diagnosed or metastatic with metastases. The hope is that they can seek out and destroy micrometastases that may be in systemic circulation.

What happens if they are used later?

Most of the advanced prostate cancer medicines were approved for men who were metastatic and castration-resistant (mCRPC). In that setting, docetaxel adds a median survival of 3 months (see this link), compared to a median of 17 additional months among men with high volume metastases in the CHAARTED trial. Zytiga adds 4 months to survival among men who are castration-resistant and have had chemo (see this link). Median (50%) survival was reached at the extended follow-up of the STAMPEDE trial. Median survival was 46 months in the SOC group, and 79 months in the Zytiga group. So, early Zytiga increased median survival by 33 months; In LATITUDE (in which all patients were more progressed), early Zytiga increased median survival by 16.8 months.

We might surmise that if used after metastatic diagnosis but before castration-resistance sets in, the survival improvement might be somewhere in between. However, long-term use of ADT drives changes in the androgen receptor that might shorten the time during which Zytiga is effective. Docetaxel, on the other hand, remains effective even after advanced hormonal agents have been utilized.

What are the other alternatives for metastatic hormone-sensitive prostate cancer (mHSPC)?

Supraphysiological doses of testosterone alternating with ADT (called Bipolar Androgen Therapy or BAT) has shown efficacy in some men (see this link). Expanded trials will tell us which men are most likely to benefit from it.

Treatment of the prostate even after metastases have been discovered  (called "debulking") is an intriguing prospect. However, the most recent reported arm of the STAMPEDE trial showed that prostate-only radiation only provided a survival benefit in oligometastatic men (see this link). There are clinical trials at MD Anderson and Rutgers (not recruiting), and registries at UT Southwestern and MSKCC and the Los Angeles VA that will further explore this opportunity. Princess Margaret Hospital in Toronto is using SBRT for this purpose (see this link). Other trials are ongoing in Europe (this one includes docetaxel and Zytiga): Ghent, and Hamburg.

Other early-use therapies are combined with ADT in clinical trials. These trials are still active:





Saturday, May 20, 2017

Brachy boost therapy should be reserved for unfavorable risk patients

The ASCENDE-RT trial showed that oncological outcomes were improved among both intermediate risk and high risk men who were treated with external beam radiation (EBRT) and a brachytherapy boost (LDR-BT) to the prostate and adjuvant androgen deprivation therapy (ADT) (see this link). A new study from the University of Michigan suggests that the benefit in intermediate risk men is exclusively among those who have been diagnosed with unfavorable intermediate risk prostate cancer.

They used the NCCN definitions:
  • Favorable intermediate risk: Gleason score 3+4 and PSA< 10 ng/ml and stage T1/T2a and <50% of biopsy cores were positive
  • Unfavorable intermediate risk: All other intermediate risk

Abugharib et al. retrospectively reported the outcomes of 579 intermediate risk men treated with either EBRT alone or EBRT+LDR-BT between 1995 and 2012. After a median follow-up of 7.5 years:

  • The 10-year biochemical recurrence free survival was 92% for the brachy boost therapy vs. 75% for EBRT alone
  • Recurrences were cut in half (hazard ratio= 0.48) by the brachy boost after correcting for known confounders
  • The improvement due to the boost was only seen in the "unfavorable intermediate risk" group, but not in the favorable intermediate risk group.
  • 10-year distant metastasis-free survival did not differ by risk group.
  • 6-year cumulative incidence of grade 3 urinary toxicity was 3.5 times higher among men who received brachy boost therapy.
  • Toxicity was transient and resolved completely in 57%, partially in 29%, and persisted in only 1 patient.

We recall that ASCENDE-RT reported nearly identical oncological and toxicity outcomes:

  • Among those with intermediate-risk prostate cancer, 9-year bPFS was 94% for the brachy boost cohort vs. 70% for EBRT-only.
  • Late term Grade 3 GU toxicity reached 19% for the brachy-boost group vs. 5% for the EBRT-only group (3.8 times higher).

Although this was not a randomized clinical trial like ASCENDE-RT, the similarity helps lend credence to their study.

There was a randomized clinical trial RTOG 0232 (see this link) that also showed no benefit to the brachy boost among favorable intermediate risk men.

While ten years is not long enough to evaluate differential effects on metastases and mortality, we may infer from the large difference in the 10-year failure rate that those differences will probably eventuate in more metastases and deaths later on.

It appears that men with unfavorable intermediate risk prostate cancer may benefit from brachy boost therapy. However, men with favorable intermediate risk prostate cancer are at risk of much greater long-term urinary toxicity with no oncological benefit whatever. We can reasonably infer that men with low risk prostate cancer, who may be safely watched with active surveillance, would derive no benefit and only greater toxicity from the combination therapy. Unfortunately some clinics, notably the Radiotherapy Clinics of Georgia, infamously treat even low risk patients with brachy boost therapy (which they market as ProstRCision).

Wednesday, May 3, 2017

Unwarranted conclusions about oligometastatic treatment

Some patients wonder, if they just have a couple of metastases, why can't those be "zapped" by a few quick SBRT treatments and thereby be cured of their prostate cancer? Or, even if they can't be cured, can't the cancer's progression be slowed down?

To address those questions, we have to understand what is called the "natural history" of prostate cancer progression. Even high-risk prostate cancer is quite a different sort of thing from metastatic prostate cancer. High-risk prostate cancer cells, for example those with Gleason score 5+5, are incapable of thriving outside the prostatic environment. At some point they undergo a genetic transition called epithelial-to-mesenchymal transition (EMT), after which they can freely move throughout the body in the lymph, blood or the spaces around nerves, and plant themselves and accumulate in distant locations. Sometimes those microscopic metastases can circulate for a long time before planting themselves somewhere new. Sometimes they can plant themselves but do not proliferate appreciably for a long time. Sometimes they can alter the tissue environment in a new place (especially bone tissue) so it is more amenable to clumping and proliferation. Sometimes those cells get caught in lymph nodes (lymph nodes may be thought of as filters to catch cellular debris, including cancer cells) and proliferate there. All of these processes occur simultaneously.

Let's try to gain an understanding of how many cancer cells are in systemic circulation at a given time. We have found that a count of 5 or more circulating tumor cells (CTC) per 7.5 ml of blood is associated with metastatic progression (the prostate is also always shedding cells, healthy and cancerous, that are not capable of metastatic progression). So a 200 lb. man with no detectable metastases and with a CTC count of 5, who has 6.5 liters of blood, will have at least 4,300 circulating tumor cells. In addition, there will be many thousands more lodged in and between tissues. Now, to be detectably metastatic with today's best imaging technology, a clump of tumor cells must be at least 4 mm long. The cancer cell may be about 10 μm, so there are at least 200,000,000 of them before the smallest metastasis becomes detectable. All of those cancer cells are constantly shedding and forming new daughter metastases elsewhere. So cancer cells may be circulating, clumping, and growing for a long time before they form a big enough clump to be detectable.

It should be clear that there is no possibility of a cure without systemic treatment. Currently, we have no systemic treatments that can cure metastatic prostate cancer.

How long does it take to go from the first microscopic metastasis to the point where it is detectably metastatic? That's impossible to know with any accuracy for a given individual. What we do know is that on average it takes 8 years from the time a man is biochemically recurrent after prostatectomy to the time when the first bone metastases are detected on a bone scan (see this link). That represents the accumulation of perhaps a billion cells in one place. It may be years more before the next bone metastasis is detected. Lymph node metastases are the slowest progressing of all the kinds that prostate cancer causes. It is not unusual for many years to pass between new detectable lymph node metastases. The new PET scans detect metastases much earlier, when the tumors are 80% smaller.

Now we can come back to the question of whether early detection and treatment of metastases can at least slow progression and increase survival. A C-11 Choline PET/CT may be able to reliably detect metastases when the PSA is only about 2 ng/ml, rather than 20 ng/ml for a bone scan. The newer PSMA-based PET/CTs may detect metastases even earlier, say at about 0.5 ng/ml. So, if any treatment is given when metastases are detected this early, and then we find that it takes a very long time - many years - to detect subsequent metastases, did the treatment delay progression? This effect is called "lead-time bias."

Adding to the confusion is the fact that those big clumps of detectable cancer cells are the source of much of the PSA. When those detected metastases are "zapped," the cancer cells in them no longer secrete PSA and the cancer is controlled locally. We also know that old clumps of cancer are a rich source for new tumor cells. Is it possible that reducing at least that local source of metastatic cells will slow progression?

The only way to answer this question with any assurance is to conduct a randomized clinical trial. Some patients will get the treatment, in this case SBRT to the detected metastases, and the other patients will get standard of care -- hormone therapy. Then we will be able to see how long it takes for new distant metastases to be detected for the treated group as compared to the control group; and more importantly, did the treated group survive longer?

Triggiani et al. retrospectively report on patients at several centers in Italy (for some reason, most of these studies have been done in Italy) who had 3 or fewer detected metastases treated with SBRT.

  • About 100 patients with a recurrence after primary treatment with metastases detected by Choline PET scan (the oligo-recurrent group)
  • 41 castration-resistant patients with metastases detected by bone scan/CT (the oligo-CRPC group)

After a median of 20-23 months of follow-up, distant progression-free survival was:

  • 43% after 2 years for the oligo-recurrent group
  • 22% after 2 years for the oligo-CRPC group

The authors conclude:
"Stereotactic body radiotherapy seems to be a useful treatment both for oligo-recurrent and oligo-CRPC."

We are now ready to understand why this is an unwarranted conclusion. There is no way to know, based on the data they provided, whether the treatment was "useful" or not. We have no way of knowing what the distant progression-free survival would have been had they not received the SBRT treatment. Inexplicably, several groups from Italy also reached such unwarranted conclusions.

In fact, in a meta-analysis with longer-running follow-up data, Ost et al. (commented on here) found that for oligo-recurrent patients, distant progression-free survival was:

  • 31% after 3 years, and only
  • 15% after 5 years

In other words, the vast majority (85%) of men with SBRT-treated oligometastatic recurrence had detectably relapsed within 5 years. Given the lead-time bias and the slow rate of detectable early progression anyway, it is impossible to say that the radiation treatment accomplished anything. Until we have some proof, patients should approach metastatic treatment for anything but palliative purposes with caution. There is currently no evidence, none, that treatment of metastases has any effect on survival.

In spite of the lack of evidence, if a radiation oncologist looking at the patient's anatomy finds metastatic radiation to be safe, then there is little reason other than cost to abstain from it. However, a patient is taking a survival risk if he puts off hormone therapy in order to find metastases, especially in light of early evidence from the TOAD study.

Treatment of pelvic lymph nodes is a special case. If a patient is able to detect any metastatic pelvic lymph nodes, and he is convinced that he should have treatment at all, he should consider treatment of the entire pelvic lymph node field rather than isolated pelvic lymph nodes. One has to treat what one can't see as well as what one can see; again, provided that it is safe to do so. Safety may be questionable because of anatomy, lack of visceral fat, history of bowel inflammation, and previous pelvic radiation. The evidence for efficacy is mixed. Some retrospective data analyses (Rusthoven, Abdollah, Jegadeesh) found a survival benefit, while some did not (Kaplan and Johnstone). These retrospective studies are notoriously confounded by selection bias (i.e., the patients who got the therapy were the most likely to improve anyway). We await the outcomes of the randomized clinical trials before we have a more definitive answer.

There are currently several randomized clinical trials that have begun. Few are large enough or scheduled to run long enough to detect a survival benefit for prostate cancer. So far, the trials are in London, Montreal, France, Ghent, Italy and at Johns Hopkins.




Monday, May 1, 2017

SBRT Dose Escalation

Is there an optimum treatment dose for SBRT? At the low end of the spectrum, Alan Katz found that 35Gy in 5 fractions gave equivalent oncological outcomes with less toxicity compared to 36.5 Gy. At the other end of the dose spectrum, a clinical trial pushed the dose as high as 50 Gy in 5 fractions with disastrous consequences (see this link).  A trial of high dose rate brachytherapy, which is radiologically similar to SBRT, failed to find an optimum dose.

But radiation safety is not only just about dose. We saw that two treatment schedules using the same prescribed dose (40 Gy in 5 fractions) had disparate toxicity outcomes (see this link). In fact, the 12 month toxicity outcomes of Dr. King's high-risk study were recently presented and look excellent (see this link). It's also worth noting once again the outcomes of the 5-year multi-institutional SBRT clinical trial that used 40 Gy in 5 fractions and had excellent oncological and toxicity outcomes (see this link).

Helou et al. reported the outcomes of their SBRT (they call it SABR, but it's the same thing) trials at the Sunnybrook Health Sciences Centre in Toronto, Canada. There were sequential trials conducted from 2006-2014:

  • 35 Gy/5 fractions/29 days - 82 low risk men only
  • 40 Gy/5 fractions/11 days or 29 days - 177 low and intermediate risk men

A few (12) men had up to 6 months of androgen deprivation to shrink their prostates prior to radiation.

As an early measure of oncological effectiveness, they used PSA at 3 years (PSA3Y) after radiation. After correcting for the other variables like age, baseline PSA, T stage, and ADT use, the dose received remained the biggest predictor of PSA3Y. Median PSA3Y was:

  • 0.64 ng/ml in those who received 35 Gy
  • 0.27 ng/ml in those who received 40 Gy
  • The difference was significant in both low risk men and intermediate risk men

The use of PSA3Y as a surrogate endpoint for biochemical recurrence is controversial. Because prostate cancer progresses very slowly and radiation, at the very least, reduces the cancer burden, it can take at least 5 years, and as long as 10 years, before we start to see concrete evidence that such therapy is curative. Also, a longer time until the nadir is achieved has been found to be correlated with failure-free survival (see this link). Nadir PSA has been proven to be a strong predictor of a lasting cure (see this link), but no one can tell when the nadir will be reached. In a recent study comparing the PSA at 1000 days after SBRT or HDR brachytherapy to the PSA at 1000 days after conventional IMRT, Kishan et al. reported that the PSA was lower for SBRT/HDR-BT. While the downward slope was about the same for the first 1000 days, the slope was steeper afterwards for SBRT/HDR-BT, indicating that a lower nadir would be achieved.

After correcting for confounders like age, baseline urinary function, and time between treatments, late term urinary toxicity of grade 2 or higher was 17 times greater among those who received 40 Gy compared to those who received 35 Gy.

The authors previously reported late term rectal toxicity. After 2 years, the cumulative probability of  grade 2 or higher rectal toxicity was suffered among:

  • 5% of the men who received 35 Gy with 4mm margins
  • 27% of the men who received 40 Gy with 5 mm margins
  • 42% of the men who received 40 Gy with 5 mm margins +  30 Gy to seminal vesicles received 

Grade 3 and 4 rectal toxicity was especially high (10%) in the group that had their seminal vesicles irradiated. There were 3 cases of fistulas that may be attributable to rectal biopsies. [Patients should be very careful about the use of any kind of instrumentation within at least 6 months of radiation. That includes cystoscopies and colonoscopies.] Since this study, the authors have changed their radiation planning to include faster (VMAT) linacs and improved rectal dose constraints. Other changes that might mitigate rectal toxicity may include use of intrafractional tracking, rectal immobilization, and a rectal spacer.

There was clearly a trade-off between SBRT dose and late-term side effects of treatments. Perhaps we will one day be able to identify those cancers that are curable with a lower dose, and treat only those with the more radio-resistant cancers with a higher dose. Some believe that such techniques as simultaneous integrated boosts or heterogeneous planning may cure the cancer in the prostate better with less damage to organs at risk. But they remain to be proved in randomized clinical trials.

Note: Thanks to Dr. Andrew Loblaw for allowing me to review the full text of the study.